
Lesson 07 - Advanced Plotting
Jul 25, 2016

Why ggplot2?
Plotting

Scatter plots
Adding plot variables

Axes
changing axis ranges
log scales

Density plots and histograms
Boxplots

Homework
Resources

In this lesson we will learn how to use the ggplot2 (based on the Grammar of Graphics) package to
plot data in R. Although ggplot2 is complicated at first, it uses a very logical approach to plotting.

You can install ggplot2 with install.packages("ggplot2") and load it into your environment
with library(ggplot2).

Code for this lesson can be found here.

Why ggplot2?
We just learned about plotting in base R. ggplot2 is another package by Hadley Wickham, that
allows for plotting with a different approach than in base R, using a grammar of graphics (hence the
package name).

Advantages

More intuitive approach to plotting: ggplot2 makes it easy to create different plots with the
same data, changing the plotting method or the grouping variable(s). It can also easily create
plots that would require “hacky” code in base R (such as comparing density distributions).
Creates better plots: ggplot2 makes it easier to create publication-quality plots, with fewer lines
of code. It also creates legends automatically and easily for color, point size, and line type

HtLtC - An Introduction to R Overview Project

http://mauriziopaul.github.io/intro-to-R/scripts/Lesson07code.R
http://vita.had.co.nz/papers/layered-grammar.html
http://mauriziopaul.github.io/intro-to-R/
http://mauriziopaul.github.io/intro-to-R/overview/
http://mauriziopaul.github.io/intro-to-R/project/

(among others), making it easy to compare different variables in a plot.1

Enforces good plotting standards: The package is structured to enforce proper plotting
techniques (for example, it does not support two different y-axes, or two different color scales
on the same plot), which helps make sure plots are understandable.

Disadvantages

Different syntax than base R plotting: All plotting functions in ggplot2 are used with different
commands, which requires learning new functions in order to create good plots. Fortunately,
there’s a cheat sheet.
Requires structured, tidy data: Because ggplot2 requires that data be in a data frame, basic
plots are still easier in base R than ggplot2. In addition, you have to make sure your data is tidy
(long) before being able to plot in ggplot2.
Enforces good plotting standards: Sometimes you want to make a plot that ggplot2
can’t/won’t support.

ggplot2’s support for legends is enough to make it worth learning, but in addition its versatility
makes it really useful for creating detailed plots.

Plotting
ggplot2 takes a data frame (in tidy format) as an argument, and maps features of the data set onto
the graph using aesthetics.

Scatter plots
Let’s start off with one of ggplot2’s default data set, diamonds, that lists diamond prices.

library(ggplot2)
> diamonds
A tibble: 53,940 x 10
 carat cut color clarity depth table price x y z
 <dbl> <ord> <ord> <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl>
1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
4 0.29 Premium I VS2 62.4 58 334 4.20 4.23 2.63
5 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
6 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48
7 0.24 Very Good I VVS1 62.3 57 336 3.95 3.98 2.47
8 0.26 Very Good H SI1 61.9 55 337 4.07 4.11 2.53
9 0.22 Fair E VS2 65.1 61 337 3.87 3.78 2.49
10 0.23 Very Good H VS1 59.4 61 338 4.00 4.05 2.39

https://www.rstudio.com/wp-content/uploads/2015/03/ggplot2-cheatsheet.pdf
http://mauriziopaul.github.io/intro-to-R/jekyll/2016/07/18/Lesson-06-data-wrangling#tidy-data-with-tidyr

... with 53,930 more rows

To plot carat vs. price using ggplot2, we call the ggplot function with our data set, and give it an
aesthetic for the x and y axes. We also add a geom: how we want to visualize the data.

ggplot(diamonds, aes(x=carat, y=price)) +
 geom_point()

All plots in ggplot2 are created this way: with the first line being a data set (and optional aesthetics),
and “adding” additional geoms or graphical parameters to the command.

Here, we’re defining the x and y aesthetics (with aes) in the ggplot2 call.

Adding plot variables

We can also define aesthetics within geom calls–for example, we can color by different aspects

using the colour argument within aes.

ggplot(diamonds, aes(x=carat, y=price)) +
 geom_point(aes(colour=cut))

So easy!

References to columns in the data frame must be within calls to aes, or else you will get an error
something like this:

> ggplot(diamonds, aes(x=carat, y=price)) +
+ geom_point(colour=cut)
Error in rep(value[[k]], length.out = n) :
 attempt to replicate an object of type 'closure'

The geom functions (e.g. geom_point) take other parameters in addition to aes. For example,

try changing the transparency of the points using the following:

ggplot(diamonds, aes(x=carat, y=price)) +
 geom_point(aes(colour=cut), alpha=0.5)

Only mapping columns in a data frame to a graphical parameter should be inside of aes.

Axes
changing axis ranges

ggplot2 has a lot of commands for refining the plot axis.

Let’s take a look at some economics data:

> economics
A tibble: 574 x 6
 date pce pop psavert uempmed unemploy
 <date> <dbl> <int> <dbl> <dbl> <int>
1 1967-07-01 507.4 198712 12.5 4.5 2944
2 1967-08-01 510.5 198911 12.5 4.7 2945
3 1967-09-01 516.3 199113 11.7 4.6 2958
4 1967-10-01 512.9 199311 12.5 4.9 3143
5 1967-11-01 518.1 199498 12.5 4.7 3066
6 1967-12-01 525.8 199657 12.1 4.8 3018
7 1968-01-01 531.5 199808 11.7 5.1 2878
8 1968-02-01 534.2 199920 12.2 4.5 3001
9 1968-03-01 544.9 200056 11.6 4.1 2877
10 1968-04-01 544.6 200208 12.2 4.6 2709
... with 564 more rows

We can use geom_line to plot unemployment data over time.

ggplot(economics, aes(x=date, y=unemploy)) +
 geom_line()

If we’re only interested in the last 16 years, we can change the plotting limits using the
coord_cartesian function:

ggplot(economics, aes(x=date, y=unemploy)) +
 geom_line() +
 coord_cartesian(xlim=c(as.Date("2000-01-01"), as.Date("2015-04-01")))

Because the date column is in Date format, we have to coerce the strings into Dates to adjust
the plotting limits via the xlim argument.

How can we adjust the y-axis so that the y-axis range includes 0?

log scales

Using the data set msleep, which contains mammalian sleep data, we can plot body weight vs.
brain weight:

ggplot(msleep, aes(x=brainwt, y=bodywt)) +
 geom_point(aes(colour=vore))

This data doesn’t look good on a scatter plot–probably because both the body weight and brain
weight fall into an exponential distribution. Log-transforming this data will make visualizing it much
better.

ggplot2 has the commands scale_x_log10 and scale_y_log10 to automatically change the
scale of the axis without having to transform the data manually.

ggplot(msleep, aes(x=bodywt, y=brainwt)) +
 geom_point(aes(colour=vore)) +
 scale_x_log10() +
 scale_y_log10()

The plot looks much cleaner, and the relationship between body weight and brain weight is evident.

Density plots and histograms
ggplot2 also can display data as a histogram, much like the hist() function. Let’s look at
another data set, midwest, that has demographic information about some Midwestern states.
What percent of people are college-educated?

ggplot(midwest, aes(x=percollege)) +
 geom_histogram()

We can change the bin width using the binwidth argument, but for this plot the default width
seems fine.

We can color the bars by state using the fill option, which functions very similarly to colour:

ggplot(midwest, aes(x=percollege)) +
 geom_histogram(aes(fill=state))

This method of plotting, with stacked bars, makes it difficult to see all the data. We can change
that using the option position="dodge" inside the histogram call, which places the bars next
to each other instead of stacked.

ggplot(midwest, aes(x=percollege)) +
 geom_histogram(aes(fill=state), position='dodge')

The resolution on this is too fine to see a difference. We can make the same plot, but change the
bin size:

ggplot(midwest, aes(x=percollege)) +
 geom_histogram(aes(fill=state), position='dodge', binwidth=5)

Great! This is looking, if not publication-worthy, at least good enough to send to collaborators.
However, the graph doesn’t have a title, and the x-axis label is not very descriptive. We can change
the plot title and the axis labels using the labs function:

ggplot(midwest, aes(x=percollege)) +
 geom_histogram(aes(fill=state), position='dodge', binwidth=5) +
 labs(title='College attendance by state', x='Percent college')

Note that here we’re adding another command to our ggplot2 set of function calls, again using +.

How would we change the y-axis label?

We can also create density plots using geom_density, using the fill option by state:

ggplot(midwest, aes(x=percollege)) +
 geom_density(aes(fill=state))

Unfortunately, these density plots overlap each other, so we need to add transparency:

ggplot(midwest, aes(x=percollege)) +
 geom_density(aes(fill=state), alpha=0.3)

It seems like Wisconsin is the most-educated state out of these five.

What happens when you use colour instead of fill?

Boxplots
We can use the geom_boxplot function to create boxplots. For example, we can go back to our
iris data:

ggplot(iris, aes(x=Species, y=Sepal.Length)) +
 geom_boxplot()

Using ggplot2, we can layer multiple geoms on the same plot. Boxplots let us see the distributions
of the data, but we can add individual data points with geom_jitter (a “jittered” extension of
geom_point).

ggplot(iris, aes(x=Species, y=Sepal.Length)) +
 geom_boxplot(outlier.color=NA) +
 geom_jitter(aes(colour=Species))

Displaying individual data points, in this organized fashion, gives a complete and easily-
interpretable picture of the data.

Homework
1. Add another geom that labels the species name for each point on the body weight vs. brain

weight plot. (Hint: look at the examples in ?geom_text.)
2. Create a new plot displaying iris Sepal Length by Species, using geom_violin instead of a

boxplot. Try coloring by species, and then filling by species.

Resources
ggplot2 cheat sheet
Become a superhero, handle your data with R

https://www.rstudio.com/wp-content/uploads/2015/03/ggplot2-cheatsheet.pdf
http://cierareports.org/blog/2013/10/18/rCourse2013/index.html

HtLtC - An Introduction to R mauriziopaul
 kutchko
 TweetNTD

Teaching resources for How to Learn to Code
(UNC-Chapel Hill, Summer 2016)

Introduction to R graphics with ggplot2

1. Base R, surprisingly, does not have good support for legends. You have to create legends
manually (?legend) and keep track of values between your legend arguments and the plot.
↩

https://github.com/mauriziopaul
https://github.com/kutchko
https://twitter.com/TweetNTD
http://tutorials.iq.harvard.edu/R/Rgraphics/Rgraphics.html

