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In this lesson, we will cover new methods for data management and data analysis workflows.

For this lesson, the following will be helpful:

Code
Data set 1: Census data
Data set 2: Airport data
Data set 3: Country data

Basics of scientific workflows
Store original data in a text file

Raw data should be stored in a text file. By doing all post-processing in R, you avoid having
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http://mauriziopaul.github.io/intro-to-R/scripts/Lesson06code.R
http://mauriziopaul.github.io/intro-to-R/data/CENSUS_POP_ESTIMATES.csv
http://mauriziopaul.github.io/intro-to-R/data/airports.csv
http://mauriziopaul.github.io/intro-to-R/data/country-codes.csv
http://mauriziopaul.github.io/intro-to-R/
http://mauriziopaul.github.io/intro-to-R/overview/
http://mauriziopaul.github.io/intro-to-R/project/


multiple versions of data files, which can cause confusion.

Create an R script to plot and process data

One of the biggest strengths of R over programs like Excel is reproducibility. Storing your analysis
and plots in a script allows you to re-create your results easily–extremely helpful for situations such
as publishing your data, writing a methods section, or receiving more data (such as another
replicate) and incorporating it into your pipeline.

You can save plots via the RStudio Plot window, but you can also save plots to PDF (or png) within
a script:

> pdf('iris_petal_lengths.pdf', width=7, height=7) 
> boxplot(iris$Petal.Length ~ iris$Species) 
> dev.off() 

The pdf() command opens a new “device”, in this case a document 7 x 7 inches, to which all
new plots are created. This device is closed with the command dev.off(), after which plots will
be created in the RStudio window.

Including these commands in your script can be useful for saving vector-based (infinite-resolution,
editable in Illustrator or Inkscape for publication) graphics as part of your workflow.

README files

A text README file (named something such as README or readme.txt) in the parent directory
of a project that explains what each file in that directory refers to is really helpful as a reminder for
collaborators, or for your future self.

Version control

Version control allows you to keep track of changes to your project. You may be familiar with the
basic version control used by Dropbox or Google Drive. Using a program such as git gives you
more power–you can keep notes of why you made changes, try out branching analysis within a
project, and more.

You can use git for a project in multiple ways (you may need to install it first):

On the command line ( git init)
Within RStudio (File -> New Project -> New Directory -> Empty Project, making sure to check
“Create a git repository”)
With a desktop client such as SourceTree

I will be talking about git more next week in the large group lecture, and there is also more
information available in the Git book.

https://www.sourcetreeapp.com/
https://git-scm.com/book/en/v2


R packages
Base R has a lot of functionality, but sometimes you need different tools–one example would be to
handle sequencing data. Instead of writing (and testing!)1 these tools yourself, there is likely a
package available with code that someone else has already written and tested. Packages contain
functions for accomplishing a set of related tasks. (In this case, Rsamtools is a package that
has functions for reading SAM/BAM files.)

The CRAN repository is the main archive for R packages. CRAN contains trusted packages,
and it’s what R accesses when you call install.packages() without specifying a source.
There are other repositories of R packages, such as Bioconductor, which is a great resource
for packages to process biological data.
You can also install individual packages from github with the devtools package, or by
specifying a file source.

Packages come with a reference manual, which contains the help documentation for each
command. They also come with vignettes about each package that you can access by their CRAN
page or with the browseVignettes function (e.g. browseVignettes(package =
'dplyr')).

Today we will be using the tidyr and dplyr packages, two very common and useful R packages by
Hadley Wickham.

Installing packages
You can install packages as so:

> install.packages('tidyr') 
> install.packages('dplyr') 

You may have to specify a CRAN mirror. It doesn’t really matter which one you choose (in theory, a
close one will be faster). If you get an error downloading the package, try using another mirror.

Some packages have dependencies, other packages that they need to run. For example, tidyr
and dplyr both require the magrittr package to run. Installing dplyr (or tidyr) will install all of its
dependencies, and loading one of packages will load all of their dependencies.

Loading packages
The functions in a package are not accessible until you load it into the environment. The library
function loads packages:

https://bioconductor.org/packages/release/bioc/html/Rsamtools.html
https://cran.r-project.org/
https://www.bioconductor.org/
https://cran.r-project.org/web/packages/devtools/index.html


> library(tidyr) 
> library(dplyr) 

You may get output such as:

Attaching package: ‘dplyr’ 

The following objects are masked from ‘package:stats’: 

    filter, lag 

The following objects are masked from ‘package:base’: 

    intersect, setdiff, setequal, union 

Warning message: 
package ‘dplyr’ was built under R version 3.2.5  

(or possibly different output). “The following objects are masked” means that there is a conflict in
function names (the function intersect exists in both dplyr and base), and the dplyr function will
take precedent.

The warning message “package ‘dplyr’ was built under R version 3.2.5” is probably irrelevant to
your uses.

So, let’s start using these packages!

Tidy data with tidyr
Hadley’s tidy data vignette goes into excellent detail about what makes data “tidy”, or easy to work
with.

In summary: A data frame is tidy when each column represents a variable, and each row
represents an observation.

Structuring your data in a tidy way helps with coding and interpretation. You also need to have tidy
data in order to use ggplot2 effectively, which we’ll talk about next lesson.

If you are working with other people’s data, you will probably spend a lot of time restructuring it to
use it efficiently. The dplyr and tidyr packages have features that make restructuring and analyzing
simpler.

Let’s look at some real-world untidy data: population estimates from the US Census.

https://cran.r-project.org/web/packages/tidyr/vignettes/tidy-data.html
https://www.census.gov/popest/data/datasets.html


> head(pop.estimates) 
  SEX AGE CENSUS2010POP ESTIMATESBASE2010 POPESTIMATE2010 
1   0   0       3944153           3944160         3951330 
2   0   1       3978070           3978090         3957888 
3   0   2       4096929           4096939         4090862 
4   0   3       4119040           4119051         4111920 
5   0   4       4063170           4063186         4077551 
6   0   5       4056858           4056872         4064653 
  POPESTIMATE2011 POPESTIMATE2012 POPESTIMATE2013 
1         3963087         3926540         3931141 
2         3966551         3977939         3942872 
3         3971565         3980095         3992720 
4         4102470         3983157         3992734 
5         4122294         4112849         3994449 
6         4087709         4132242         4123626 
  POPESTIMATE2014 POPESTIMATE2015 
1         3949775         3978038 
2         3949776         3968564 
3         3959664         3966583 
4         4007079         3974061 
5         4005716         4020035 
6         4006900         4018158 

So, each population estimate has its own column. This is not tidy. The data set has five variables:
sex, age, actual population, estimated population, and year. However, each year has its own
column, rather than having a column for the year and a column for the estimated population.

spread and gather
We can use the gather function in tidyr to transform this data into tidy data.

gather takes four arguments: data frame, key, value, and columns to transform.

> pop.estimates.tidy <- gather(pop.estimates, Year, EstPop, 
+     c(POPESTIMATE2010, POPESTIMATE2011, POPESTIMATE2012, 
+       POPESTIMATE2013, POPESTIMATE2014, POPESTIMATE2015)) 
> head(pop.estimates.tidy) 
  SEX AGE CENSUS2010POP ESTIMATESBASE2010            Year  EstPop 
1   0   0       3944153           3944160 POPESTIMATE2010 3951330 
2   0   1       3978070           3978090 POPESTIMATE2010 3957888 
3   0   2       4096929           4096939 POPESTIMATE2010 4090862 
4   0   3       4119040           4119051 POPESTIMATE2010 4111920 
5   0   4       4063170           4063186 POPESTIMATE2010 4077551 



6   0   5       4056858           4056872 POPESTIMATE2010 4064653 

The column names become the keys (in this case, “Year”), and the values are gathered into a single
column (in this case, “EstPop”). Here, I specified the column names manually2. You may have
noticed that dplyr and tidyr use bare words for column names instead of strings. This is a
major difference compared to base R.

The spread function does exactly the opposite of the gather function: it spreads a key/value
pair into new columns.

> pop.estimates.untidy <- spread(pop.estimates.tidy, Year, EstPop) 
> head(pop.estimates.untidy) 
  SEX AGE CENSUS2010POP ESTIMATESBASE2010 POPESTIMATE2010 
1   0   0       3944153           3944160         3951330 
2   0   1       3978070           3978090         3957888 
3   0   2       4096929           4096939         4090862 
4   0   3       4119040           4119051         4111920 
5   0   4       4063170           4063186         4077551 
6   0   5       4056858           4056872         4064653 
  POPESTIMATE2011 POPESTIMATE2012 POPESTIMATE2013 
1         3963087         3926540         3931141 
2         3966551         3977939         3942872 
3         3971565         3980095         3992720 
4         4102470         3983157         3992734 
5         4122294         4112849         3994449 
6         4087709         4132242         4123626 
  POPESTIMATE2014 POPESTIMATE2015 
1         3949775         3978038 
2         3949776         3968564 
3         3959664         3966583 
4         4007079         3974061 
5         4005716         4020035 
6         4006900         4018158 

We turn each value in our Key column (Year) to a column, using the values in the Value column
(EstPop), and we recreate our original data.

Piping
The magrittr package that both tidyr and dplyr load introduces a new pipe operator: %>%. This
operator sends data from the last function into the next function.

For example, we can rewrite the gather function above as:



> pop.estimates %>% 
+     gather(Year, EstPop, 
+            c(POPESTIMATE2010, POPESTIMATE2011, POPESTIMATE2012, 
+              POPESTIMATE2013, POPESTIMATE2014, POPESTIMATE2015)) 

The pipe function sends the previous data to become the first argument in the next function. We
can use this feature to create chains of function calls:

> pop.estimates %>% 
+     gather(Year, EstPop, 
+            c(POPESTIMATE2010, POPESTIMATE2011, POPESTIMATE2012, 
+              POPESTIMATE2013, POPESTIMATE2014, POPESTIMATE2015)) %>% 
+     head

Functions don’t have to belong to the tidyr or dplyr packages to use them with the pipe! You can
pipe data into any function–in this case, the head function.

The tidyr and dplyr functions are all written so that chaining functions together is easy.

separate
In our pop.estimates.tidy data frame, we have a column for the year. However, this year is a
character vector, and in a form we can’t use for plotting. The separate function in tidyr lets us
access this data.

> pop.estimates.tidy %>% 
+     separate(Year, into=c('temp', 'Year2'), sep=-5, convert=TRUE) %>% 
+     head
  SEX AGE CENSUS2010POP ESTIMATESBASE2010        temp Year2  EstPop 
1   0   0       3944153           3944160 POPESTIMATE  2010 3951330 
2   0   1       3978070           3978090 POPESTIMATE  2010 3957888 
3   0   2       4096929           4096939 POPESTIMATE  2010 4090862 
4   0   3       4119040           4119051 POPESTIMATE  2010 4111920 
5   0   4       4063170           4063186 POPESTIMATE  2010 4077551 
6   0   5       4056858           4056872 POPESTIMATE  2010 4064653 

The first argument in separate is the data frame (but here, it receives the data from the
pipe).
The second argument is the column to be separated–note again that it’s a bare word, not in
quotes.
The third argument ( into) is a character vector of the new column names. We don’t need
the column that says “POPESTIMATE”, so I’m storing that in a temporary column for now.



The fourth argument defines the separator. If this argument is not specified, separate splits
at all alphanumeric values. Here, it’s splitting at the 5th character from the end of the string.
(For more details, see ?separate.)
convert=TRUE changes the data types of the new columns. In this case, the new “Year2”

column is all numeric, so tidyr converts it to a numeric column. Very useful!
Finally, the new data frame is piped to the head function.

If the data frame is being assigned to a variable, all the operations are carried out before
assignment–in this case, the final data frame consists of only six rows.

Manipulating data with dplyr
The dplyr package makes basic data manipulations–filtering, sorting, renaming columns, removing
columns–easier than in base R.

tbl_df / tibble
To start off with, dplyr introduces a new data structure called a “tibble” (formerly called a tbl_df).
Tibbles are data frames, but with a few extra features, most notably smart printing.

We can turn a data frame into a tibble using the as_data_frame function (compare to base R’s
as.data.frame).

> as_data_frame(pop.estimates) 
# A tibble: 306 x 10 
     SEX   AGE CENSUS2010POP ESTIMATESBASE2010 POPESTIMATE2010 
   <int> <int>         <int>             <int>           <int> 
1      0     0       3944153           3944160         3951330 
2      0     1       3978070           3978090         3957888 
3      0     2       4096929           4096939         4090862 
4      0     3       4119040           4119051         4111920 
5      0     4       4063170           4063186         4077551 
6      0     5       4056858           4056872         4064653 
7      0     6       4066381           4066412         4073013 
8      0     7       4030579           4030594         4043046 
9      0     8       4046486           4046497         4025604 
10     0     9       4148353           4148369         4125415 
# ... with 296 more rows, and 5 more variables: POPESTIMATE2011 <int>, 
#   POPESTIMATE2012 <int>, POPESTIMATE2013 <int>, 
#   POPESTIMATE2014 <int>, POPESTIMATE2015 <int> 

Tibbles only print out the first ten rows of a data frame (no more using head to peek at the data!

https://blog.rstudio.org/2016/03/24/tibble-1-0-0/


no more printing 5000 rows of a data frame on accident!), and they only print the columns that can
fit on screen. These features make glancing at the data very easy.

Tibbles can be turned back into regular data frames using the as.data.frame function, but you
probably won’t find that necessary.

select
The select function allows us to select specific columns from the data frame. In
pop.estimates.tidy, we have some columns that we aren’t interested in–specifically

“CENSUS2010POP” and “ESTIMATESBASE2010”, and we can use select to get rid of them.

We can either select the columns we want:

> pop.estimates.refined <- pop.estimates.tidy %>% 
+     as_data_frame %>% 
+     separate(Year, into=c('temp', 'Year2'), sep=-5, convert=TRUE) %>% 
+     select(SEX, AGE, Year2, EstPop) 
> pop.estimates.refined 
# A tibble: 1,836 x 4 
     SEX   AGE Year2  EstPop 
*  <int> <int> <int>   <int> 
1      0     0  2010 3951330 
2      0     1  2010 3957888 
3      0     2  2010 4090862 
4      0     3  2010 4111920 
5      0     4  2010 4077551 
6      0     5  2010 4064653 
7      0     6  2010 4073013 
8      0     7  2010 4043046 
9      0     8  2010 4025604 
10     0     9  2010 4125415 
# ... with 1,826 more rows 

Or remove the columns we don’t want, by using a negative vector:

> pop.estimates.tidy %>% 
+     as_data_frame %>% 
+     separate(Year, into=c('temp', 'Year2'), sep=-5, convert=TRUE) %>% 
+ select(-c(CENSUS2010POP, ESTIMATESBASE2010, temp)) 

The end results are the same. Again, note that we’re using bare words here to describe these
columns.



We can also use select to rename columns when selecting them:

> pop.estimates.refined %>% 
+     select(Gender = SEX, Age = AGE, Year = Year2, EstPop) 

Here, “EstPop” doesn’t change names, but all the other columns do.

mutate
The mutate function creates a new variable in a data frame. For example:

> population.change <- pop.estimates %>% 
+     as_data_frame %>% 
+     mutate(EstimatedChange = POPESTIMATE2015 - POPESTIMATE2010) %>% 
+     select(SEX, AGE, EstimatedChange) 
> population.change 
# A tibble: 306 x 3 
     SEX   AGE EstimatedChange 
   <int> <int>           <int> 
1      0     0           26708 
2      0     1           10676 
3      0     2         -124279 
4      0     3         -137859 
5      0     4          -57516 
6      0     5          -46495 
7      0     6          -53806 
8      0     7          105314 
9      0     8          142283 
10     0     9            8149 
# ... with 296 more rows 

You can also use mutate to assign a single value to a column:

> population.change %>% 
+     mutate(Country = 'United States') 
# A tibble: 306 x 4 
     SEX   AGE EstimatedChange       Country 
   <int> <int>           <int>         <chr> 
1      0     0           26708 United States 
2      0     1           10676 United States 
3      0     2         -124279 United States 
4      0     3         -137859 United States 
5      0     4          -57516 United States 



6      0     5          -46495 United States 
7      0     6          -53806 United States 
8      0     7          105314 United States 
9      0     8          142283 United States 
10     0     9            8149 United States 
# ... with 296 more rows 

filter
filter removes rows based on logical criteria–the dplyr equivalent of subset. For example,

let’s say we’re not interested in data by age or sex, and only want to select data for the entire
population (coded as AGE == 999 and SEX == 0):

> pop.estimates.refined %>% 
+     filter(AGE == 999 & SEX == 0) 
# A tibble: 6 x 4 
    SEX   AGE Year2    EstPop 
  <int> <int> <int>     <int> 
1     0   999  2010 309346863 
2     0   999  2011 311718857 
3     0   999  2012 314102623 
4     0   999  2013 316427395 
5     0   999  2014 318907401 
6     0   999  2015 321418820 

How could we look at the population for only people over 90?

group_by and summarize
The group_by function creates groups within a data frame, by one or by multiple variables.

Grouping makes it easy to perform within-group operations to create a new data frame, using the
summarize (also summarise) or mutate functions.

> pop.estimates.refined %>% 
+     filter(SEX != 0 & AGE != 999) %>% 
+     group_by(SEX, Year2) %>% 
+     summarize(Total = sum(EstPop)) 
Source: local data frame [12 x 3] 
Groups: SEX [?] 

     SEX Year2       Total 
   <int> <int>       <int> 



1      1  2010   152088043 
2      1  2011   153291772 
3      1  2012   154521077 
4      1  2013   155706770 
5      1  2014   156955337 
6      1  2015   158229297 
7      2  2010   157258820 
8      2  2011   158427085 
9      2  2012   159581546 
10     2  2013   160720625 
11     2  2014   161952064 
12     2  2015   163189523 

summarize collapses data into unique values of its groups, while mutate keeps all rows, but
still performs operations over each group.

The n() function returns the number of rows. Since this census data has a number for each age,
it’s not very useful for our purposes, but we can use it for the airport data to find the number of
airports per country:

> airports <- as_data_frame(read.csv('data/airports.csv', 
>                                    stringsAsFactors=FALSE)) 
> airports %>% 
+     group_by(country) %>% 
+     summarize(NumAirports = n()) 
# A tibble: 240 x 2 
               country NumAirports 
                <fctr>       <int> 
1          Afghanistan          21 
2              Albania           1 
3              Algeria          44 
4       American Samoa           3 
5               Angola          26 
6             Anguilla           1 
7           Antarctica          19 
8  Antigua and Barbuda           2 
9            Argentina         103 
10             Armenia           4 
# ... with 230 more rows 

In this case, all combinations of gender and year have the same number of observations, but you
may find this function useful in another data set.



Joining data frames
You may have the same columns in multiple data frames that you want to intersect. dplyr has
functions to intersect these data frames together: left_join, right_join, inner_join,
full_join, semi_join, anti_join. (The first three are the ones I use most frequently. For

more information, click here.)

left_join is the most frequently-used join function. It takes a data frame, A, and joins all rows
in B that match A. Unless you tell left_join which columns to join by (using the argument
by), it will join by all columns that have the same names.

Taking the airport data for example: maybe you want to add a column for the currency of the host
country, so that travelers know which currency they use. Using data from here, we can use
left_join to add a row for currency:

> currency <- as_data_frame(read.csv('data/country-codes.csv', 
+     stringsAsFactors=FALSE)) %>% 
+     select(Country = name, Currency = ISO4217.currency_alphabetic_code) 
> airport.currency <- airports %>% 
+     select(airport.id, name, Country = country) %>% 
+     left_join(currency) 
Joining, by = "Country" 
> airport.currency 
# A tibble: 8,107 x 4 
   airport.id                       name          Country Currency 
        <int>                      <chr>            <chr>    <chr> 
1           1                     Goroka Papua New Guinea      PGK 
2           2                     Madang Papua New Guinea      PGK 
3           3                Mount Hagen Papua New Guinea      PGK 
4           4                     Nadzab Papua New Guinea      PGK 
5           5 Port Moresby Jacksons Intl Papua New Guinea      PGK 
6           6                 Wewak Intl Papua New Guinea      PGK 
7           7                 Narsarsuaq        Greenland      DKK 
8           8                       Nuuk        Greenland      DKK 
9           9          Sondre Stromfjord        Greenland      DKK 
10         10             Thule Air Base        Greenland      DKK 
# ... with 8,097 more rows 

And more
There are many more functions in dplyr than what I covered here, that you might find useful for your
data. The vignette is a good resource, as is the RStudio Data Wranging cheat sheet3.

https://cran.r-project.org/web/packages/dplyr/vignettes/two-table.html
https://github.com/datasets/country-codes
https://cran.rstudio.com/web/packages/dplyr/vignettes/introduction.html
http://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf


HtLtC - An Introduction to R  mauriziopaul Teaching resources for How to Learn to Code

Homework
1. Create a new variable, Gender, based on the SEX column in pop.estimates.refined,

except coded as a character or factor instead of as numeric. (Hint: ?ifelse or ?factor
may be useful.) 0 refers to aggregated data (all), 1 refers to male, 2 refers to female.

2. Create two data frames with the following code. Join these two data frames with
inner_join, left_join, right_join, and full_join. Based on the results, can

you describe in plain English how each join function specifically works, and handles incomplete
data?

df1 <- data.frame( 
    Letter = c('A', 'C', 'E', 'G'), 
    n1 = c(7, 8, 9, 10), 
    stringsAsFactors=FALSE 
)
df2 <- data.frame( 
    Letter = c('A', 'B', 'C', 'D'), 
    n2 = c(1, 2, 3, 4), 
    stringsAsFactors=FALSE 
)

Resources
PLOS Computational Biology: Ten Simple Rules for Reproducible Computational Research
PLOS Biology: Computing Workflows for Biologists: A Roadmap
Tidy data
Introduction to dplyr

1. Writing new tools is only half the battle–making sure the tools always behave as expected,
even if they receive unexpected data, is a hugely important part of coding. ↩

2. dplyr’s starts_with function might also come in handy for this data:
gather(pop.estimates, Year, EstPop, starts_with("POPESTIMATE")). ↩

3. I have this cheat sheet taped up next to my desk, and I look at it all the time when writing
code. ↩

https://github.com/mauriziopaul
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003285
http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1002303
https://cran.r-project.org/web/packages/tidyr/vignettes/tidy-data.html
https://cran.rstudio.com/web/packages/dplyr/vignettes/introduction.html
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