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In this lesson, I will present a basic overview of: (1) probability distributions in R, and (2) modeling
data in R using built-in statistical functions. It is helpful to think about what type of statistical
distribution best captures the pattern of your data, in order to do hypothesis tests, estimation,
prediction, and/or any other statistical inference.

We will use the code that is provided in this script.

Probability Distributions in R
Statistics in R

There are a lot of statistical functions available in base R. To see a list of those which are in the
package stats, enter the following in your console. This is a very long list, so we will just focus
on a select few.

library(help = "stats") 

Families

Each probability distribution in R comes in a family of four related functions, with the following
prefixes:

d* for density
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p* for probability
q* for quantile, and
r* for random

such that the norm or normal distribution in R is accessed using dnorm(), pnorm(),
qnorm(), or rnorm(), depending on what you are trying to do. 1 Each of these four types take

different inputs and give different outputs.

To simulate random data, will mostly use the r* prefix. This should be familiar to you. In Lesson
03 and Lesson 04, we encountered the random normal, rnorm() distribution, and in Lesson 04,
the random (continuous) uniform runif() distribution. A few other probability distributions you
may be familiar with from an introductory probability/statistics course are: (1) the Poisson,
rpoiss() distribution, (2) the binomial, rbinom(), distribution, and the exponential, rexp(),

distribution. In contrast with the normal, uniform, and exponential distributions, which are
continuous, the Poisson and Binomial distributions are discrete, i.e. they deal with count data.

Poisson
In the poisson distribution, we can describe the expected number of times that an event will occur
within a given time period (or volume, or genome length, etc.) Or more precisely, we describe the
expected rate of occurrence.

One assumption we make when modeling data with a Poisson distribution is that the number of
occurrences within each given interval is independently drawn from an identical underlying
distribution. That means that if we know the numer of events for the first interval, this does not
affect the expected number of events for the next interval, and so on.

In other words, the event rate is considered a random variable that is distributed independently
and identically from the same true underlying Poisson process, with a mean of , indicating the
average or expected number of events per interval. 2

Example: Prediction

The average number of times the word “near” is encountered in a book, “The Farthings”, is 1.5
times per page ( ). We are told that the rate of occurrence of “near”, which we are calling X,
follows a Poisson distribution. What is the probability that we will find exactly 2 instances of “near”
in the next 1 page?

For those who like formal notation, we have the following:

λ

λ = 1.5

X ∼ Pois(λ)

Pr(X == 2 ∣ λ = 1.5) =?

https://en.wikipedia.org/wiki/Poisson_distribution
https://en.wikipedia.org/wiki/Binomial_distribution
https://en.wikipedia.org/wiki/Exponential_distribution


Solution:

We can use the d* function for poisson, dpois, which gives the expected probability for any X,
given :

dpois(x=2, lambda=1.5) 

This is not a very sophisticated form of prediction. However, this enables us to retrieve a probability
of an event, after making some assumptions about the underlying distribution, poisson, and
parameter(s), lambda.

Data Set: Bad Words in Select Movies

Read in the data.

download.file( 
 "http://mauriziopaul.github.io/intro-to-R/data/mov.csv", 
 destfile="mov.csv") 
mov <- read.csv("mov.csv") 

In this data set, there are 4 columns: movie, type, word, and minutes_in.

The column movie has seven levels corresponding to 7 movies.

The column type has two levels corresponding to the type of event being recorded ( word or
death).

The column word has 61 levels corresponding to 60 unique censored words (not appropriate for
class, thus bleeped out), with word_1 representing a placeholder for death (I could have
reassigned these to have NA values). 3

The final column, minutes_in, is a numeric/float column, which indicates how many minutes
into the movie the event occurs, with values extending between 0.4 to 160.4.

Example: Prediction, revisited

In this case, we want to know the average per-minute rate for a specific event, word. That will be
the . We then can use this to ask: If the film continued, what is the likelihood that we would
encounter 5 more word’s in the next minute of film? For the moment, we assume that the counts
per minute follow a Poisson distribution.

This will take a little bit of pre-processing to get through.

Let’s start with movie=="Reservoir Dogs", and focus on the type=="word" events. We will

λ

λ



convert the fractional minutes to whole minute values using the floor command.

m.sub.word <- subset(mov, movie=="Reservoir Dogs" & type=="word") 
m.sub.word$minute <- floor(m.sub.word$minutes_in) 

This data set does not specify the total number of minutes in the movie, but let’s suppose that we
know from elsewhere that the movie has 99 minutes in it (from minute 0 through minute 98).

How many word events are there?

nrow(m.sub.word) 

We can make a table of counts per minute across all 99 minutes, including all the minutes with zero
counts. 4

datmat <- table(rep(0:98)) 

for(i in 0:98){ 
 thiscount <- nrow(subset(m.sub.word, minute==i)) 
 datmat[names(datmat)==i] <- thiscount 
}

What is the average count per minute, and the range of counts per minute? Let’s also plot these in
a bar plot.

mean(datmat) 
range(datmat) 
barplot(datmat) 

How does the following plot differ from the last?

barplot(table(m.sub.word$minute)) 

What does the distribution of rates look like? How does it compare with a random sample from a
Poisson distribution that has the same n and lambda as our data?

hist(datmat, xlim=c(0,16), breaks=15, xlab="rate per min") 
hist(rpois(n=421, lambda=4.252525), xlim=c(0,16), breaks=10, xlab="rate per min")

If we take that to be our , and we want to know what is the probability that x=5, for a Poisson
with , we have:

λ
λ = 4.252525



dpois(x=5, lambda=4.252525) 

or a 16.49% chance of happening.

The Poisson distribution may or may not be a good fit for this specific data set. However, the
Poisson distribution, and related distributions (such as the negative binomial), are useful for
modeling next-gen sequencing data. Consider an RNA-seq experiment, and imagine that the
minutes in the movie are instead nucleotides across a chromosome / transcriptome, and that the
number of word occurrences are the read counts (depth) at each nucleotide site. This is the
foundation for our understanding of the distribution of short read counts in an RNA-seq
experiment.

Additional details about other probability distributions are available at this link: http://www.r-
tutor.com/elementary-statistics/probability-distributions

Other Distributions
Binomial

bin <- rbinom(n=100,size=1,prob=0.5) 
plot(bin, pch=16, ylim=c(-1,2)) 
hist(bin, breaks=2) 

bin <- rbinom(n=100,size=1,prob=0.2) 
plot(bin, pch=16, ylim=c(-1,2)) 
hist(bin, breaks=2) 

Try changing the number of samples ( n), or the probability (i.e., coin flip “bias”) and plotting the
result. How close does your sample, bin, come to the probability that you set?

mean(bin)

Exponential

exp <- rexp(n=100, rate=5) 
plot(exp, pch=16) 
hist(exp)

And so on. See some additional details here
http://www.statmethods.net/advgraphs/probability.html, and here
http://www.cyclismo.org/tutorial/R/probability.html

http://www.r-tutor.com/elementary-statistics/probability-distributions
http://www.statmethods.net/advgraphs/probability.html
http://www.cyclismo.org/tutorial/R/probability.html


Modeling Data in R
The point of this section is to show you the relevant functions for simple data modeling, not to
teach you the theory behind the models.

The Student’s t-test
You will likely be familiar with the Student’s t-test. We will focus on the two-sample t-tests, using
both the paired and unpaired versions.

Unpaired

First, let’s subset the data on two of the species, and plot.

iris.sub <- droplevels(subset(iris,  
 Species %in% c("setosa", "versicolor"))) 
plot(Sepal.Length ~ Species, data = iris.sub) 
beeswarm(Sepal.Length ~ Species, data=iris.sub, add=TRUE, pch=16) 

The two methods below are essentially equivalent.

with(iris.sub, t.test(Sepal.Length[Species == "setosa"],  
 Sepal.Length[Species == "versicolor"])) 
t.test(Sepal.Length ~ Species, data = iris.sub) 

Do you understand what each line of output means?

Conveniently, the second method, using a formula, is both simpler and consistent with the plot
formula we used previously.

Paired

Suppose we had before/after data, and we wanted to see if there was a difference in the before
and after values, accounting for the pairing of the data (data from here: http://www.r-
bloggers.com/paired-students-t-test/).

before = c(12.9, 13.5, 12.8, 15.6, 17.2, 19.2, 12.6, 15.3, 14.4, 11.3) 
after = c(12.0, 12.2, 11.2, 13.0, 15.0, 15.8, 12.2, 13.4, 12.9, 11.0) 
t.test(before, after, paired=TRUE) 

Linear Regression

http://www.r-bloggers.com/paired-students-t-test/


Suppose we wanted to know if there was a significant effect of Species on Sepal.Length,
but there are more than two groups of Species in our data set. We would start by building a
linear model of our data.

When we generate a linear model, we assume that our values are distributed, in this case, from a
distribution where the residual errors are distributed normally.

Often, the fit for a simple linear model uses a least squares approach, which draws a line through
the data (in 2 or more dimensions), minimizing the residual difference between the points and the
line by some metric. The estimate for the beta’s is then the value of the slope of the line of best
fit. The residuals, varepsilon, are assumed to be drawn from a normal distribution, with a
standard deviation of .

Let’s plot the data:

plot(Sepal.Length ~ Species, data = iris) 
beeswarm(Sepal.Length ~ Species, data=iris, add=TRUE, pch=16) 

Let’s build a very simple linear model of our data.

fit <- lm(Sepal.Length ~ Species, data=iris) 
fit

The function lm(), by default, includes an intercept, . Perhaps we don’t want an intercept in
our linear model. There are circumstances when this might be the case. We can then formulate our
expression like this:

fit0 <- lm(Sepal.Length ~ Species - 1, data=iris) 
fit0

ANOVA
anova(fit)
summary(aov(fit)) 

anova(fit0) 

Pairwise Differences

y = + x + εβ0 β1

ε ∼ N(0, )σ2

σ2

β0



The ANOVA only tells us if levels of a particular factor contribute significantly to the phenotype
variation. It does not tell us which levels of that factor are significantly different from which other
levels. One way to compute all pairwise differences between levels of a factor is to use
TukeyHSD().

TukeyHSD(aov(fit)) 

Example: Warpbreaks

Back to our exciting warp breaks per loom data set. Let’s look at modeling the effects of two
factors.

data(warpbreaks) 
beeswarm(breaks ~ wool * tension, data=warpbreaks, pch=16) 
boxplot(breaks ~ wool * tension, data=warpbreaks, add=TRUE) 

Let’s fit the data with a linear model.

wbfit <- lm(breaks ~ wool * tension, data=warpbreaks) 

What if we build up our model, piece-by-piece?

wbfit0 <- lm(breaks ~ wool, data=warpbreaks) 
wbfit1 <- lm(breaks ~ wool + tension, data=warpbreaks) 
wbfit2 <- lm(breaks ~ wool * tension, data=warpbreaks) 

What is the difference between wbfit1 and wbfit2?

What was another option for the formula in wbfit0?

We can use anova() to compare any two nested models.

anova(wbfit1, wbfit0) 
anova(wbfit2, wbfit1) 

This seems to indicate that tension is a significant factor (p=0.001378), and the interaction between
tension and wool is also significant (p=0.02104).

The order of comparisons does matter, and it can change the question you are asking of the data.

wbfit0a <- lm(breaks ~ tension, data=warpbreaks) 
wbfit1 <- lm(breaks ~ wool + tension, data=warpbreaks) 
anova(wbfit1, wbfit0a) 



wbfit <- lm(breaks ~ 1, data=warpbreaks) 

What is the following expression equivalent to (what does the . represent)?

wbfit <- lm(breaks ~ ., data=warpbreaks) 

Quantile-Quantile plots
What do these tell us?

qqnorm(iris$Sepal.Length) 
qqline(iris$Sepal.Length) 

qqnorm(iris$Sepal.Width) 
qqline(iris$Sepal.Width) 

qqnorm(iris$Petal.Length) 
qqline(iris$Petal.Length) 

qqnorm(iris$Petal.Width) 
qqline(iris$Petal.Width) 

How else might you compare the distribution of the iris data with a true random normal
distribution?

Homework
1. Using barplot, plot the number of words that occur in Django Unchained, which is 165

minutes long.

2. Run an anova test on the Petal.Length ~ Species in the iris data set.

3. Let’s assume that the average number of goals scored in a World Cup football (soccer) match
is 2.8, and the score per match follows a Poisson distribution. What is the probability that there
will be 4 goals scored in the next World Cup football match?
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Statistical Models”

1. The function norm() is not related to the four normal distribution functions. It is used for an
unrelated matrix algebra calculation. ↩

2. This kind of random variable is something different from the variable that we talk about in R,
which just means an object that we assign a value to. ↩

3. This data set was cleaned up from one that was used in a FiveThirtyEight.com article, which
you can try to find yourself after class. ↩

4. There is probably a better way to do this, but this code is fairly easy to follow. ↩
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