
Lesson 04 - Loops, logic, and (l)apply
Jul 5, 2016

Logical comparisons
if statements
if / else if / else
logical operations
Element-wise operations

For loops
The apply family of functions

lapply and sapply
Functions

apply
mapply

Homework
Resources

In this lesson we will cover logic, loops, and the apply family of functions in R–the nuts and bolts of
coding in R. This lesson uses this R script.

Logical comparisons
if statements
“If statements” evaluate a logical expression, and if the logical expression is TRUE, executes code
in a block.

> president <- 'John Adams'
> if (president %in% characters$Person) {
+ print('in data frame')
+ }

> president <- 'Thomas Jefferson'
> if (president %in% characters$Person) {
+ print('in data frame')

HtLtC - An Introduction to R Overview Project

http://mauriziopaul.github.io/intro-to-R/teachingResources/logic.R
http://mauriziopaul.github.io/intro-to-R/
http://mauriziopaul.github.io/intro-to-R/overview/
http://mauriziopaul.github.io/intro-to-R/project/

+ }
[1] "in data frame"

if / else if / else
Adding an else block after an if statement only runs if the statement is evaluated as FALSE.

> year <- 1776
> if (year < 1776) {
+ america <- FALSE
+ } else {
+ america <- TRUE
+ }
> america
[1] TRUE

If you have multiple conditions that you want to check sequentially, you can use else if, with or
without an else statement at the end.

> candidate <- 'John Adams'
> if (candidate == 'Thomas Jefferson') {
+ print('The election of 1800')
+ } else if (candidate == 'John Adams') {
+ print('Welcome, folks, to the Adams administration')
+ } else if (candidate == 'George Washington') {
+ print('Here comes the General')
+ } else {
+ print('Never gonna be President now')
+ }
[1] "Welcome, folks, to the Adams administration"

You will probably not use if statements as often in R as you would in other languages, because R
has many built-in commands to handle logical questions. However, you will use logic frequently.

logical operations
The following operations all return TRUE or FALSE:

Operation Description Example

== equals x == 5

!= does not equal x != 5

> greater than x > 5

>= greater than or equal to x >= 5

< less than x < 5

<= less than or equal to x <= 5

%in% in x %in% vec

! not ! x %in% vec

&& and (within an if statement) x > 4 && x < 6

|| or (within an if statement) x == 5 || x == 10

Element-wise operations
In addition, you can perform element-wise logical operations, which return a logical vector as
output. All of the above commands are the same, except for and/or, which are slightly different:

Operation Description Example

& and (elementwise) vec > 5 & vec < 10

| or (elementwise) vec == 5 | vec == 10

The logical vector output from element-wise operations can be used to subset data:

> years[! is.na(years)]
[1] 1776 1780 1781 1789 1800

It can also be used with the ifelse function, which takes three arguments: a logical expression
as the first argument, which returns the second argument for all TRUE values and the third
argument for all FALSE values. For example:

> characters$Can.Vote <- ifelse(characters$Gender == 'Male', 'Yes', 'No')
> characters
 Person Born Died Gender State Can.Vote
1 Alexander Hamilton 1755 1804 Male New York Yes
2 Elizabeth Schuyler Hamilton 1757 1854 Female New York No
3 Aaron Burr 1756 1836 Male New York Yes
4 Angelica Schuyler Church 1756 1814 Female New York No
5 George Washington 1732 1799 Male Virginia Yes
6 Thomas Jefferson 1743 1826 Male Virginia Yes

(Ladies, tell your husbands, vote for Burr!)

In addition, you can perform logical tests on logical vectors. The any command takes a logical
vector and returns TRUE if any element is TRUE, and FALSE otherwise (e.g.
any(is.na(years))). The all command is similar, except it returns true only if all elements

are TRUE

What questions can you ask about the years vector?

For loops
For loops iterate over a series of numbers, performing an operation for each number. For example:

> for (x in 3:10) {
+ print(x * (x - 1) / 2)
+ }

prints the result of x * (x - 1) / 2 for each number from 3 to 10.

In general, you should say no to this. While for loops are a staple of other languages, they are bad
form in R. R is built to perform operations vector-wise, not a single element at a time. In R, loops
are slower than vector-based operations and require special assignment operators if you want to
save variables in a for loop.

Instead, in R we use the apply family of functions. These functions accomplish the same thing that
for loops do, but R processes them much faster.

The apply family of functions
You ready for more yet? Here is a brief and incomplete introduction to some of the most important
members of the apply family of functions. If you ever want to perform some kind of repetitive action
in R, there is probably a way of accomplishing the task using a member of the apply family.

lapply and sapply
lapply (list-apply) performs a function for each element in a vector, and returns a list. To run the

above operation using lapply:

> lapply(3:10, function(x) { x * (x - 1) / 2 })

Here, list format is inconvenient for us. The function sapply (simplified apply) simplifies the output
into a one-dimensional vector or a two-dimensional matrix, if possible.

> sapply(3:10, function(x) { x * (x - 1) / 2 })
[1] 3 6 10 15 21 28 36 45

And we get a vector output!

Functions

The first argument of lapply and sapply is a vector, and the second is a function. Here, we’ve
been creating a function on the fly. We can also use named functions:

> sapply(3:10, sqrt)
[1] 1.732051 2.000000 2.236068 2.449490 2.645751 2.828427 3.000000 3.162278

We can also create our own functions, which is useful if you want to perform the same operation
for multipe instances.

> calculate <- function(x) {
+ return(x * (x - 1) / 2)
+ }
>
> sapply(3:10, calculate)
[1] 3 6 10 15 21 28 36 45

This creates a new function calculate, which takes a single argument x, and returns a single
value. This gives us the same result as before.

Can you create a function that takes two arguments, x and y, and returns a single value? (Hint:
function(x, y).)

apply
apply performs a function over the margins (dimensions) of a matrix. It takes three arguments: a

matrix, the margin to operate on, and the function.

Rows are dimension 1, columns are dimension 2. You may even have a multi-dimensional matrix, in
which you can apply a function in dimensions larger than 2.

Let’s create a matrix and use apply to get the sums of each row.

> mat <- matrix(runif(36), 6, 6)
> mat

 [,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.002867928 0.1100434 0.03687472 0.4496658 0.8361962 0.33399994
[2,] 0.583620251 0.2020315 0.93322561 0.6536612 0.8086006 0.84139340
[3,] 0.760687128 0.6532561 0.52838671 0.6673850 0.9317638 0.98515174
[4,] 0.511206046 0.6005721 0.03271370 0.8100123 0.8883558 0.10507092
[5,] 0.117145436 0.9188314 0.45514699 0.9381366 0.1823394 0.98072499
[6,] 0.334364618 0.9936215 0.57287663 0.6996659 0.8466637 0.05897952
> apply(mat, 1, sum)
[1] 1.769648 4.022533 4.526631 2.947931 3.592325 3.506172

How can we get the sums of each column using apply? How can we get the median of each
column?

There are four functions to find the means and the sums of a two-dimensional matrix built-in:
rowSums, rowMeans, colSums, colMeans. Do you get the same results with these

functions that you do with apply?

mapply
mapply (multivariate apply) calls a function repeatedly that takes multiple arguments, calculating

the output for each set of arguments in the list. Unlike the previous apply functions we’ve learned,
mapply takes the function first and then the variables to calculate over.

For example, we can calculate the age of each of our characters using mapply:

> characters$Age <- mapply(
+ function(x, y) { y - x },
+ characters$Born,
+ characters$Died
+)
>
> characters
 Person Born Died Gender State Can.Vote Age
1 Alexander Hamilton 1755 1804 Male New York Yes 49
2 Elizabeth Schuyler Hamilton 1757 1854 Female New York No 97
3 Aaron Burr 1756 1836 Male New York Yes 80
4 Angelica Schuyler Church 1756 1814 Female New York No 58
5 George Washington 1732 1799 Male Virginia Yes 67
6 Thomas Jefferson 1743 1826 Male Virginia Yes 83

(This is a simple example. An easier way to do this specific task would be characters$Age <-
characters$Died - characters$Born.)

HtLtC - An Introduction to R mauriziopaul
 kutchko
 TweetNTD

Teaching resources for How to Learn to Code
(UNC-Chapel Hill, Summer 2016)

Homework
Save the following calculations in a script:

1. Create a 10 x 10 matrix with numbers fitting a normal distribution (matrix(rnorm(100,
mean=X, sd=Y), 10, 10), where X and Y are numbers of your choice). Find the means
and standard deviations of each row and column. Do these correspond to the values you
chose for the rnorm inputs?

2. How many values in your matrix are more than one standard deviation above the mean?
3. Which values in your matrix are between one and two standard deviations below the mean?
4. Plot a histogram (?hist) of petal lengths in the iris data set, excluding flowers of the

setosa species.

Resources
Statistical Analysis: an Introduction using R/R/Logical operations
A brief introduction to “apply” in R

https://github.com/mauriziopaul
https://github.com/kutchko
https://twitter.com/TweetNTD
https://en.wikibooks.org/wiki/Statistical_Analysis:_an_Introduction_using_R/R/Logical_operations
https://nsaunders.wordpress.com/2010/08/20/a-brief-introduction-to-apply-in-r/

