
Lesson 03 - Basic Plotting
Jun 27, 2016

Background
Plot Types

Example Data: airports.csv
Histogram
Density Plot
Scatterplot
Line graph
Boxplot
Barplot
Correlation matrix
Pairs Plot

In Class Exercise
Useful Functions

Plot and Graphical Functions
Saving / exporting plots
Lattice Plots

Homework
Key Points
References

Sources of Open Data
Other learning resources for base R plotting
Books

Background
Staring with the basics: a plot is a graphical representation of data. A plot is usually used to
convey some sort of message about the data that cannot be easily understood by looking at
the data in its native (usually tabular) format.

HtLtC - An Introduction to R Overview Project

http://127.0.0.1:4000/intro-to-R/jekyll/2016/06/27/Lesson-03-basic-plotting#background
http://127.0.0.1:4000/intro-to-R/jekyll/2016/06/27/Lesson-03-basic-plotting#plot-types
http://127.0.0.1:4000/intro-to-R/jekyll/2016/06/27/Lesson-03-basic-plotting#example-data-airportscsv
http://127.0.0.1:4000/intro-to-R/jekyll/2016/06/27/Lesson-03-basic-plotting#histogram
http://127.0.0.1:4000/intro-to-R/jekyll/2016/06/27/Lesson-03-basic-plotting#density-plot
http://127.0.0.1:4000/intro-to-R/jekyll/2016/06/27/Lesson-03-basic-plotting#scatterplot
http://127.0.0.1:4000/intro-to-R/jekyll/2016/06/27/Lesson-03-basic-plotting#line-graph
http://127.0.0.1:4000/intro-to-R/jekyll/2016/06/27/Lesson-03-basic-plotting#boxplot
http://127.0.0.1:4000/intro-to-R/jekyll/2016/06/27/Lesson-03-basic-plotting#barplot
http://127.0.0.1:4000/intro-to-R/jekyll/2016/06/27/Lesson-03-basic-plotting#correlation-matrix
http://127.0.0.1:4000/intro-to-R/jekyll/2016/06/27/Lesson-03-basic-plotting#pairs-plot
http://127.0.0.1:4000/intro-to-R/jekyll/2016/06/27/Lesson-03-basic-plotting#in-class-exercise
http://127.0.0.1:4000/intro-to-R/jekyll/2016/06/27/Lesson-03-basic-plotting#useful-functions
http://127.0.0.1:4000/intro-to-R/jekyll/2016/06/27/Lesson-03-basic-plotting#plot-and-graphical-functions
http://127.0.0.1:4000/intro-to-R/jekyll/2016/06/27/Lesson-03-basic-plotting#saving--exporting-plots
http://127.0.0.1:4000/intro-to-R/jekyll/2016/06/27/Lesson-03-basic-plotting#lattice-plots
http://127.0.0.1:4000/intro-to-R/jekyll/2016/06/27/Lesson-03-basic-plotting#homework
http://127.0.0.1:4000/intro-to-R/jekyll/2016/06/27/Lesson-03-basic-plotting#key-points
http://127.0.0.1:4000/intro-to-R/jekyll/2016/06/27/Lesson-03-basic-plotting#references
http://127.0.0.1:4000/intro-to-R/jekyll/2016/06/27/Lesson-03-basic-plotting#sources-of-open-data
http://127.0.0.1:4000/intro-to-R/jekyll/2016/06/27/Lesson-03-basic-plotting#other-learning-resources-for-base-r-plotting
http://127.0.0.1:4000/intro-to-R/jekyll/2016/06/27/Lesson-03-basic-plotting#books
http://127.0.0.1:4000/intro-to-R/
http://127.0.0.1:4000/intro-to-R/overview/
http://127.0.0.1:4000/intro-to-R/project/

Plots can be used for data exploration, as well as for formal presentation or publication. In this
lesson, I will mostly focus on using plots for data exploration. The purpose of the plot, in this
scenario, is to give you insight to be able to answer a question you have about data you have
collected or curated. This type of plot should show the data with all its messiness and baggage,
so to speak.

When you are generating a plot for publication, however, you probably want a final product that
is both honest and direct about the message it sends. This can take more time, and is beyond
the scope of this lesson. R plots, with customization, make very good plots for publication, so it
is worth taking time to learn both basic and advanced R plotting.

There is not just one right way to plot a data set. Therefore, keep in mind that your choice of
plot can clarify or confuse the intended viewer, and you might want to rethink how you choose
to plot something after you plot it.

To start things off, we need some clean data available to plot. Most likely, you will be interested
in plotting data that you or your collaborators have generated. However, we will be plotting two
other, convenient, types of clean data in this lesson:

1. Open Data (available in R, or online).
2. Random Data (generated in R).1

Why random data? Plotting and understanding random distributions can help you to
understand your own data (think null hypothesis vs. alternative hypotheses, or null distribution
vs. true distribution). We will revisit this concept in more depth during our lesson on data
modeling (Lesson 05).

Plot Types
There are many plot types available in base R. We will go through some of the following basic
plots, and hopefully get a sense of their strengths and weaknesses for different applications.

1. Histogram
2. Density plot
3. Scatterplot
4. Line graph
5. Boxplot
6. Barplot
7. Correlation matrix
8. Pairs plot

http://127.0.0.1:4000/intro-to-R/jekyll/2016/06/27/Lesson-03-basic-plotting#fn:pseudorandom

Example Data: airports.csv

> download.file("http://mauriziopaul.github.io/intro-to-R/data/airports.csv", destfile="airports.csv")

> dat <- read.csv("airports.csv")

> names(dat)

The description of this data set is available here: OpenFlights Airport Database

Before we plot the data, we can ask some basic questions about the data. See if you can
understand and implement these types of queries.

How many countries have airports?

> length(unique(dat$country))

How many airports are in the USA? I will use the subset() function, which was introduced
last week.

> dat.sub <- subset(dat, country=="United States")

> length(unique(dat.sub$name))

How many cities in the USA have airports?

> length(unique(dat.sub$city))

Can you come up with other questions to ask about the data?2

Histogram
You encountered the histogram plot function hist() last week. Let’s try it out on this data
set.

Let’s suppose that we wanted to see the distribution of airports by longitude, binned into 20
bins (breaks).

> hist(dat$latitude, breaks=20)

Let’s try the same thing, but this time look at longitude.

http://openflights.org/data.html
http://127.0.0.1:4000/intro-to-R/jekyll/2016/06/27/Lesson-03-basic-plotting#fn:plot-no-options

> hist(dat$longitude, breaks=20)

We can make a finer-graned plot by increasing the number of breaks.

> hist(dat$longitude, breaks=100)

> hist(dat$longitude, breaks=10^3)

> hist(dat$longitude, breaks=10^5)

Which plot did you like best?

Was there a noticeable difference in computation time between the different plots?

Density Plot
Based on the plots from our histogram, it looks like we can include too few breaks, or too many
breaks. One way to get a clear image that conveys a similar message is to plot something
known as a density plot. This shows a smoothed distribution of the data histogram.3

> plot(density(dat$longitude))

The x-axis is basically the same as in the histogram. Below the x-axis you see the count of the
datapoints and the estimate for something called ‘bandwidth’, which we won’t worry about right
now (you can learn more about it here).

Instead of frequency (or counts) on the y-axis, which is what we saw in the histogram, we now
have a “density.”

How might you change the x and y axis labels? If you don’t know how, what is a good way to
find out?

Scatterplot
Since we know that latitude and longitude have a real, physical/geographical meaning, we can
try plotting them against each other in what is known as a scatterplot.

We don’t have to worry about plotting the continents behind the points right now (though we
can try that after the advanced plotting lecture). The data is rich enough that we can get a good
sense of geography from the points themselves.

> plot(latitude~longitude, data=dat)

http://127.0.0.1:4000/intro-to-R/jekyll/2016/06/27/Lesson-03-basic-plotting#fn:kernel
http://stats.stackexchange.com/questions/61374/what-does-bandwidth-mean

What is R doing here?

It is basically taking one vector (a column from your data frame) and plotting it against another
vector (another column from your data frame). The vectors have to be the same length (which is
fine, because all data frames are rectangular), and in the same order (the 10th value of the x
vector corresponds to the 10th value of the y vector). If there is a missing (NA) value in one of
the columns, R will not plot a point for that ‘row’ of data. So, there should be the same number
of points in a scatterplot as there are full, paired x and y coordinates.

You can think of the ~ symbol as indicating regression of one variable on another, or as
indicating “y vs. x”, in that order.

We can change the format of the plot. Perhaps we want to shrink the points and fill them in so
that they are not empty circles. We can use something called pch to set the p lot ch aracter or
symbol (I am not sure if that what PCH means, but it is easy to remember).

> plot(latitude~longitude, data=dat, pch=16)

We can shrink the points using cex , which indicates the scaling factor (defaults to 1).

> plot(latitude~longitude, data=dat, pch=16, cex=0.5)

We still have overlapping points. Let’s make a new color, a semi-transparent red. We’ll use
rgb to generate our colors this time.

> new.red <- rgb(red=1, blue=0, green=0, maxColorValue=1, alpha=0.2)

> plot(latitude~longitude, data=dat, pch=16, cex=0.5, col=new.red)

This gives us a sense of the density of airports in different locations, even when the points are
overlapping.

We can highlight a specific set of airports. Perhaps we want to see where the airport in “Bad
Gastein” is. We can use a function called points to add to the existing plot.

> dat.bad <- subset(dat, city=="Bad Gastein")

> points(latitude~longitude, data=dat.bad, pch=8, col="black", cex=2)

You can only call points() after some sort of plot has been initiated with plot() ,

plot.new() or some other plot function. This is not true for all plot functions– some of them
take a parameter called add , where you can specify add=TRUE or add=FALSE .

What country is the “Bad Gastein” airport in? What about the airport in “Chinchilla”?

Let’s highlight the airports in the US.

> dat.us <- subset(dat, country=="United States")

> plot(latitude~longitude, data=dat, pch=16, cex=0.5, col=new.red)

> points(latitude~longitude, data=dat.us, pch=16, col="black")

Does anything look strange to you? Let’s explore the data a bit:

> dat.us[dat.us$longitude>-50,]

Some of these airports are annotated as being in the “United States”, but their
timezone.olson value specifies Africa, Asia, or Europe! So, we see that data exploration

through plotting can reveal inconsistencies, errors, or outliers in the data. Good thing we didn’t
publish this plot! Perhaps OpenFlights will clarify/correct these rows in a future update.

Line graph
We can easily change the plot type in the plot function by specifying type="l" , for a line
graph:

> plot(latitude~longitude, data=dat, type="l")

Previously when we used plot() , R defaulted to type="p" , for points. As you might have
guessed, there is also a lines() function, and like points() , it can only be called after a
new plot has been made. In this case, a line graph is not a great way to represent our data,
since the lines are connecting points that are in no particular order of interest. Longitudinal data
(where the y-axis is a phenotype, and x-axis is time) is better viewed as a line graph. Can you
find a data set included with R that would be well suited for visualization using a line graph?

Boxplot
A boxplot gives a useful summary of the distribution of numeric data across discrete or
categorical factors. For this type of plot, we will use one of the more exciting open data sets
available, “The Number of Breaks in Yarn during Weaving” data set.

> data(warpbreaks)

Let’s try some of our tricks:

> head(warpbreaks)

> str(warpbreaks)

> levels(warpbreaks$wool)

> levels(warpbreaks$tension)

> dim(warpbreaks)

> nrow(warpbreaks)

> ncol(warpbreaks)

> mean(warpbreaks$breaks)

> sd(warpbreaks$breaks)

Now, let’s just ask R to plot one variable vs. the other, using this construction:

> plot(breaks~wool, data=warpbreaks)

R is defaulting to type="b" , for boxplot. What do the boxes and whiskers indicate? We can
also do the same for tension:

> plot(breaks~tension, data=warpbreaks)

If we want to see how the interaction between wool and tension affect the distribution of the
number of breaks, we could try the following:

> plot(breaks~wool*tension, data=warpbreaks)

However, R just plots the values against each of the categories in subsequent plots. If you want
them in the same plot, just try:

> boxplot(breaks~wool*tension, data=warpbreaks)

There is an R package called beeswarm which plots jittered points to illustrate the distribution
of data in each category in a different way.

Can you install beeswarm and use add=TRUE to overlay a boxplot and a beeswarm plot?

Barplot

Let’s go back to the airport dataset. What if we wanted to know how many airports are in each
country? We can use a table, or a barplot.

We can ouptut this summary in a table:

> table(dat$country)

The summary function will also do this, and rank order the countries from high to low count.
However, it will not show all the results.

> summary(dat$country)

Let’s try to use the function barplot .

> barplot(dat$country)

That didn’t work! What’s wrong with our command? Well, we have a summary table of the data,
which compiles the counts by country. Let’s try to plot that instead.

> barplot(table(dat$country))

OK. That worked, but now we only have a few of the country labels. We can use something
called las to specify the direction of the x and y axis labels.

> barplot(table(dat$country), las=2)

That looks better. (What happens when you use las=0, las=1 , las=2 , las=3 ,

las=4 ?)

We still can’t read the names. We can do two things to fix this.

1. We can shrink the text using cex , or in this case, cex.names :

2. Or we can save the image as a really wide pdf, so that there is space to put the labels in
without any overlap.

> barplot(table(dat$country), las=2, cex=0.4)

> pdf("barplot-of-airport-data.pdf", width=20, height=5)

> barplot(table(dat$country), las=2)

> dev.off()

The function pdf() opens a pdf graphical dev_ice, and dev.off() shuts off the _dev_ice.

The pdf won’t be readable until you complete those two steps, sandwiching the plots that you
want to output to pdf in between the two device commands. We can then open the pdf file in
the location it is saved, which is your working directory. _Do you know where that is?

> getwd()

Did your labels fit? How might you change the argument values in the pdf() function to make

sure they fit? The mar argument in the par() function specifies default margin values.

> par("mar")

You can think of these as going clockwise from the bottom (bottom, left, top, right), specified in
line height units. Since we want to increase the bottom margin, we can specify mar=c(9.1,
4.1, 4.1, 2.1)

> pdf("barplot-of-airport-data.pdf", width=30, height=5)

> par(mar=c(15.1, 4.1, 4.1, 2.1))

> barplot(table(dat$country), las=2)

> dev.off()

This will overwrite the old pdf. Read more about par , mar and las here.

Correlation matrix
Let’s generate some random data! We will eventually use this to plot a correlation matrix,
since two independent random data sets should not, in general, be correlated.

> set.seed(1999)

> random.x <- rnorm(n=1000, mean=5, sd=1)

> random.y <- rnorm(n=1000, mean=5, sd=1)

> plot(random.y~random.x)

These points are apparently not correlated with eachother.

What happens if we throw an extra set.seed in, before generating random.z , using the same
seed?

http://rfunction.com/archives/1302

> set.seed(1999)

> random.z <- rnorm(n=1000, mean=5, sd=1)

> plot(random.z~random.x)

These points are perfectly correlated (they are not sampled independently – they are ‘sampled’
identically and both dependent on the same seed). This means that random.z==random.x .

Let’s bind these up into a data frame, and examine the correlation. In order to plot this, we will
briefly foray into the world beyond base R plotting.

> random.dat <- cbind(random.x, random.y, random.z)

> install.packages(c("corrplot","corrgram"))

> library(corrplot); library(corrgram)

> cor(random.dat)

> corrplot(cor(random.dat)) # this looks like a domino

> corrgram(random.dat)

This is one example of how different packages can do essentially the same thing. This data is
not too interesting. Let’s find something that has a more natural correlation structure. I chose
this data set (called swiss) because it has multiple continuous variables:

> data(swiss)

> corrgram(swiss)

> corrplot(cor(swiss))

Remember, this sort of display looks for correlations, not causation. Do you have a preference
for corrgram or corrplot, and why? We might want to look a little closer at the actual data
points.

Pairs Plot
Thankfully, in base R, there is a great function to look at all pairwise scatter plots in your data
set.

> pairs(swiss)

What do you see? How does the information in this visualization differ from what you saw in the
correlation plots?

In Class Exercise
Please assemble yourselves into groups of about 2-3 people.

Step 0. Choose a team name! (This is the most important step. OK, don’t waste too much time
on this, but make it good – no pressure!)

Step 1. Scan the list of available datasets in R using the following command:

> library(help="datasets")

Step 2. Choose one of the data sets that interests you (or the one which is the least
uninteresting to you), and read it into R using the data() function.

Here are some suggested data sets for:

Histogram, Density, and/or Scatterplot: iris, USArrests, mtcars, pressure, quakes, randu,
rock, stackloss, trees, women
Correlation Plot: USArrests, mtcars, quakes, randu, rock, trees

Step 3. Find the column names (and row names, if applicable) of the data set you chose.

In the last class, we learned to use head() , str() , levels() , dim() , nrow() ,
ncol() , mean() , and other functions. Can you apply these to your data set (data

frame)?

Step 4. Decide on two columns that you would like to plot against each other (y vs. x) using a
line or points (scatter) plot. If you are using a histogram or density plot, decide on one

column to visualize.

What question are you asking of the data at this point?
What do you expect to see?

Step 5. Plot the data.

Step 6. Consider the following:

Was the plot informative?
Did the plot help to answer the question you had about the data?
How did the plot differ from what you expected?
How might you improve the plot (layout, color, text size, format, etc.) so that it is more

publication-worthy?
What other questions might you ask of the data, and what plots would you use?

Useful Functions
Plot and Graphical Functions

* plot()

* par()

* lines()

* points()

* text()

* title()

* mtext()

* axis()

* colorRamp()

* rgb()

* expression()

* layout()

Saving / exporting plots

* jpeg()

* pdf()

* png()

* dev.copy()

* devSave()

* quartz()

* dev.off()

Lattice Plots
For multivariate data, you can use something called the lattice package. First,
install.packages("lattice") , then try out the following plots:

* xyplot()

* bwplot()

* histogram()

* stripplot()

* dotplot()

* splom()

* levelplot()

* contourplot()

Homework
Repeat the in class exercise, using the same data set that you chose in class.

This time, visualize the data using two different types of plots, or two different versions of the
same plot to answer a single question you have about the data.

What are the benefits of each choice? What would the ideal plot look like?

Extra: What sort of hypothesis might you test, and how would you determine statistical
significance of the result (thinking ahead to the lesson on data analysis in R)?

Key Points
There may be many ways to plot the same data, each method leading to a different insight.
There may be many different data sets that look the same, if you use a method of data
visualization that does not discriminate between them. This can lead to false conclusions.

References
Parts of this lesson were sourced from this site (a quick read!): R Base Graphics: An Idiot’s
Guide. This adds to what we have covered in class, playing around with coloring and labeling,
etc.

Sources of Open Data
Public Dataset List on GitHub
OpenFlights Airport Database

Other learning resources for base R plotting
Clean Graphs in R

http://rpubs.com/SusanEJohnston/7953
https://github.com/caesar0301/awesome-public-datasets
http://openflights.org/data.html
http://shinyapps.org/apps/RGraphCompendium/index.php

HtLtC - An Introduction to R mauriziopaul
 kutchko
 TweetNTD

Teaching resources for How to Learn to
Code (UNC-Chapel Hill, Summer 2016)

Quick-R: Basic Graphs
Introduction to R: Base Graphics (ramnathv)
Graphics in the R Language
On Boxplots
BoxPlotR
Revolution Analytics: graphics
R Graphics

Books
Graphical Data Analysis with R (2015), Unwin
R Graphics, 2nd edition (2011), Murrell
Statistics at Square One, 9th edition (1997), Swinscow: See Chapter 1 on “Data display
and summary”

1. This data is pseudo random, because, unlike truly ‘random’ data, the sequences generated
from these functions are replicable, and exhibit properties that are close enough to random,
while enabling reproducibility when given a seed value. ↩

2. There is the option, strangely enough, to simply call the plot() function on a dataset,
without specifying any options. In this case, R will choose what kind of plot to use on your
behalf. I can’t think of any scenario in which I would do this myself, but it can be done! ↩

3. The density() function uses a kernel density estimate. It involves a Fourier transform
and smoothed linear approximations (not important to know for this lesson). It works well
for many types of data, but you will sometimes want to compare it with a histogram.
Sometimes you will want to set the bandwidth manually. ↩

https://github.com/mauriziopaul
https://github.com/kutchko
https://twitter.com/TweetNTD
http://www.statmethods.net/graphs/
https://ramnathv.github.io/pycon2014-r/visualize/base_graphics.html
http://www.stat.berkeley.edu/~statcur/WorkshopBC/Presentations/Graphics/graphics.pdf
http://www.nature.com/nmeth/journal/v11/n2/pdf/nmeth.2813.pdf
http://boxplot.tyerslab.com/
http://blog.revolutionanalytics.com/graphics/
https://www.stat.auckland.ac.nz/~paul/RG2e/
http://www.gradaanwr.net/
https://www.stat.auckland.ac.nz/~paul/RG2e/
http://www.bmj.com/about-bmj/resources-readers/publications/statistics-square-one
http://127.0.0.1:4000/intro-to-R/jekyll/2016/06/27/Lesson-03-basic-plotting#fnref:pseudorandom
http://127.0.0.1:4000/intro-to-R/jekyll/2016/06/27/Lesson-03-basic-plotting#fnref:plot-no-options
http://127.0.0.1:4000/intro-to-R/jekyll/2016/06/27/Lesson-03-basic-plotting#fnref:kernel

