
Lesson 02 - Basic Operations
Jun 20, 2016

Data types
Vectors

Numeric vectors
Character vectors
Factors
Logical vectors

Matrices
Lists
Data frames

Examining data frames
What can we do with data stored in a data frame?

Reading data
Text file formats
read.table

The ? operator and reading help files
Working directory
Reading a CSV file
Missing data

Scripting
Dealing with errors
Nomenclature
Homework
Resources

In this lesson we will focus on reading and handling data, and what you need to know in order to
do so.

In this lesson, we will learn about:

Data types
Reading and writing data frames
How to read help manuals for functions
How to start writing scripts

HtLtC - An Introduction to R Overview Project

http://mauriziopaul.github.io/intro-to-R/
http://mauriziopaul.github.io/intro-to-R/overview/
http://mauriziopaul.github.io/intro-to-R/project/

Data types
1. Vectors
2. Matrices
3. Lists
4. Data frames

Vectors
A vector is a one-dimensional list of values. The values in this list have a type: either numeric,
character, factor, or logical. All values in a vector will have the same type (whether you want
them to or not).

Numeric vectors

All values in a vector are a number, or missing (NA or NaN).

> c(1, 2, 3, 4)
[1] 1 2 3 4
> c(1, 2, NA, 4.5)
[1] 1.0 2.0 NA 4.5

Character vectors

All values in a vector are a string (or missing).

> c('VA', 'NC', 'SC')
[1] "VA" "NC" "SC"
> c('VA', 'NC', 'SC', 200)
[1] "VA" "NC" "SC" "200"

(Strings can look like numbers to the human eye. R doesn’t care that the 200 could be a number,
because it’s with a bunch of other strings. You can coerce strings to become numbers with the
function as.numeric, e.g. as.numeric("200").)

Factors

Factors look like strings but have a specific function: to store different levels of a variable, such as
experimental conditions.

> factor(c('M', 'F', 'M', 'F', 'M', 'F'))
[1] M F M F M F

Levels: F M

Logical vectors

Vectors can be made up of logicals: TRUE and FALSE values.

> c(TRUE, TRUE, TRUE, FALSE)
[1] TRUE TRUE TRUE FALSE

TRUE is not the same as "TRUE" or "True". Special values such as TRUE, FALSE, NA,
NaN, and NULL are case-sensitive and not placed in quotes.

Matrices
Matrices are two-dimensional vectors. Like vectors, they can only contain one type of data.

You can create matrices with functions such as matrix, rbind (binds vectors as rows), and
cbind (binds vectors as columns).

> mat <- rbind(c(7, 8, 9, 10), c(1, 2, 3, 4), c(-1, -2, -3, -4))
> mat
 [,1] [,2] [,3] [,4]
[1,] 7 8 9 10
[2,] 1 2 3 4
[3,] -1 -2 -3 -4

You can extract single values, rows, columns, or matrices from a matrix.

> mat[1, 4]
[1] 10
> mat[1,]
[1] 7 8 9 10
> mat[, 4]
[1] 10 4 -4
> mat[1:2, 2:4]
 [,1] [,2] [,3]
[1,] 8 9 10
[2,] 2 3 4

Matrices have their uses but data frames can contain more information.

Lists

Lists are, well, lists of things. You can mix different data types in a list–you can have numeric
values, strings, even data frames stored in a single list. They are versatile dumping grounds for
information.

> list.example <- list(TRUE, 1, c(2, 3), 'four')
> list.example
[[1]]
[1] TRUE

[[2]]
[1] 1

[[3]]
[1] 2 3

[[4]]
[1] "four"

You can access elements of a list with double brackets, rather than single brackets such as for
vectors and matrices.

> list.example[[3]]
[1] 2 3

Data frames
Data frames store information!

For a data frame: Each row is an instance of an observation (such as a person, day, or flower),
and each column is a variable (such as weight, temperature, or petal length). Each column has a
name. Row names are optional (but personally, I do not like them).

R has some built-in data sets; let’s look at one called iris now.

> head(iris)
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa

head gives you the first six rows of a data frame. Here, we see that there are four measurements
for each flower, as well as an additional column for the species.

> str(iris)
'data.frame': 150 obs. of 5 variables:
 $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
 $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
 $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
 $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
 $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...

str provides the structure of the data frame. The first four columns are numeric, and the last
column is a factor.

Here, though, we can’t see what the third level of the Species factor is! Fortunately, we can extract
individual columns from a data frame. And unfortunately, there are multiple ways to do this.

The best way is with the $ operator: iris$Species.

> levels(iris$Species)
[1] "setosa" "versicolor" "virginica"

Other ways to perform the same operation are iris[['Species']], iris[, 'Species'],
and iris[, 5].

Examining data frames

We already learned the head function. Its corresponding function, tail, gives the last six rows
of a data frame.

Functions dim (dimensions), nrow (number of rows), and ncol (number of columns) report
the size of the data frame or matrix.

> dim(iris)
[1] 150 5
> nrow(iris)
[1] 150
> ncol(iris)
[1] 5

You can also examine the column names through the names and colnames function, and row
names through rownames.

What can we do with data stored in a data frame?

Storing data in a data frame allows us to efficiently examine it, filter it, and run statistical analyses.
For example, we can make some basic plots with this data:

> hist(iris$Petal.Length)
> boxplot(iris$Petal.Length ~ iris$Species)

We will learn more about plotting next week.

We can also filter data with the subset function (as well as logical vectors, which we will cover in
Week 4). The subset allows us to select only certain rows from a data frame. For example, we can
only select flowers that have a petal width greater than 2:

> subset(iris, Petal.Width > 2)
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
101 6.3 3.3 6.0 2.5 virginica
103 7.1 3.0 5.9 2.1 virginica
105 6.5 3.0 5.8 2.2 virginica
...
149 6.2 3.4 5.4 2.3 virginica

Reading data
You will probably want to load your own data of various types into R. Storing data in plain text files
is a great way to share data, because then other users can use your data with any software.

Text file formats
You will likely encounter three different formats of plain-text data:

Whitespace-delimited values
Tab-separated values (tsv)
Comma-separated values (csv)

All these files contain rows of observations with the same number of columns in each row. They
only differ in the column delimiter.

These formats are not strict, however. You may find variations such as: whether or not a file
includes headers (column names), whether it includes row names, what indicates a missing value,
etc.

read.table
The R function read.table reads a plain-text file into a data frame.

The ? operator and reading help files

You can load the help for a function by using the ? operator, e.g. ?read.table. Try loading the
help for read.table.

Reading the help manuals in R is a skill unto itself. They have all the information you need, but not
necessarily clearly written.

First, there is a description of what the function does:

Reads a file in table format and creates a data frame from it, with cases corresponding to lines and
variables to fields in the file.

Then, there is an example function:

read.table(file, header = FALSE, sep = "", quote = "\"'",
 dec = ".", numerals = c("allow.loss", "warn.loss", "no.loss"),
 row.names, col.names, as.is = !stringsAsFactors,
 na.strings = "NA", colClasses = NA, nrows = -1,
 skip = 0, check.names = TRUE, fill = !blank.lines.skip,
 strip.white = FALSE, blank.lines.skip = TRUE,
 comment.char = "#",
 allowEscapes = FALSE, flush = FALSE,
 stringsAsFactors = default.stringsAsFactors(),
 fileEncoding = "", encoding = "unknown", text, skipNul = FALSE)

Each of the elements of the function call is an argument. Arguments within a function call are
assigned with an equals sign. (They can also be assigned without the equals by their order.) The
values of each argument listed here are the defaults.

This function has a ton of arguments! Fortunately, they are described later in the help manual.
Some examples:

header: a logical value indicating whether the file contains the names of the variables as its first
line. If missing, the value is determined from the file format: header is set to TRUE if and only if the
first row contains one fewer field than the number of columns.

sep: the field separator character. Values on each line of the file are separated by this character. If
sep = “” (the default for read.table) the separator is ‘white space’, that is one or more spaces, tabs,

newlines or carriage returns.

na.strings: a character vector of strings which are to be interpreted as NA values. Blank fields
are also considered to be missing values in logical, integer, numeric and complex fields.

stringsAsFactors: logical: should character vectors be converted to factors? Note that this is
overridden by as.is and colClasses, both of which allow finer control.

We also discover from the help manual the functions read.csv and read.delim, which read
CSV files and TSV files, respectively. They are the same function as read.table, but with
different default arguments.

And, at the bottom of the help page, there are examples of how the function can be used.

Working directory

R sessions exist in a working directory. You can find out which directory you’re in with getwd(),
and change your working directory with setwd('DirectoryName'). Within RStudio, you can
also change your working directory with the menus: Session -> Set Working Directory -> Choose
Directory.

Reading a CSV file

Can you read AirQuality.csv into your environment?

> air.qual <- read.csv('AirQuality.csv')
> str(air.qual)
'data.frame': 153 obs. of 6 variables:
 $ Ozone : Factor w/ 68 levels "-","1","10","108",..: 36 31 9 16 1 24 21 17 59 1 ...
 $ Solar.R: Factor w/ 118 levels "-","101","112",..: 29 5 17 88 1 1 85 118 28 33 ...
 $ Wind : num 7.4 8 12.6 11.5 14.3 14.9 8.6 13.8 20.1 8.6 ...
 $ Temp : int 67 72 74 62 56 66 65 59 61 69 ...
 $ Month : int 5 5 5 5 5 5 5 5 5 5 ...
 $ Day : int 1 2 3 4 5 6 7 8 9 10 ...
> head(air.qual)
 Ozone Solar.R Wind Temp Month Day
1 41 190 7.4 67 5 1
2 36 118 8.0 72 5 2
3 12 149 12.6 74 5 3
4 18 313 11.5 62 5 4
5 - - 14.3 56 5 5
6 28 - 14.9 66 5 6
> hist(air.qual$Ozone)
Error in hist.default(air.qual$Ozone) : 'x' must be numeric

Whoops! Because a hyphen was used as a missing value, and R wasn’t expecting that, the
Ozone and Solar.R columns were read in as factors, when they are numeric information and

should be read in as numbers.

Here, it’s a good thing we’ve learned about the read.table (and read.csv) options. How can
we handle this situation to read in the table correctly?

Missing data

Most data sets have missing data points, and R has functions to handle them.

is.na returns a logical vector–elements that are NA return TRUE, and non-missing values
return FALSE–e.g., is.na(air.qual$Ozone).

Based on what we learned with subset, how can we select only only rows from air.qual
where data is missing for Solar.R?

Many functions return a missing value when given a data set with some missing data (e.g.
mean(air.qual$Ozone)). If you think that removing missing data is scientifically justified, you

can use the na.rm argument that many functions have.

> ?mean
> mean(air.qual$Ozone)
[1] NA
> mean(air.qual$Ozone, na.rm=TRUE)
[1] 42.12931

Scripting
We have learned a lot about what we can do interactively in R–but for reproducibility, we can save
a series of commands in a script. This script can be saved, edited, and re-run as many times as
you want.

To create a new script in RStudio, you can go to: File -> New File -> R Script. Type any commands
you like. Finally, you can save the script by going to File -> Save.

You can run the whole script by clicking the “Source” button in the console. Alternatively, you can
run specific lines by highlighting them and pressing Cmd+Enter (Mac) or Ctrl-Enter (Windows).

My typical workflow for analyzing data involves going back and forth between the console and the
source code. I use the console to make sure I’m executing the steps correctly, and keeping the

correct code in my source script.

Scripting also lets you annotate your process, so that your collaborators (or Future You)
understands what you were trying to do at each step of your code. You can add comments to your
code with the pound sign:

This is a comment
head(air.qual) # comment starts here

Everything after the pound sign (or “hashtag”) is a comment, but anything before it will be
executed.

Dealing with errors
You will have errors in your code, all the time. These can fall under certain categories:

Things the computer recognizes as errors

> head(airqual)
Error in head(airqual) : object 'airqual' not found
> haed(air.qual)
Error: could not find function "haed"

Things the computer thinks might be an error–so it gives a warning
Things that the computer doesn’t recognize as an error, but doesn’t work as intended

hist(air.qual$Ozone)
abline(v = mean(air.qual$Ozone))

When you have an error in your code, follow these instructions:

1. Don’t panic.
2. Guess why it is happening.
3. Check if your guess is correct.
4. Repeat steps 1 through 3 as necessary.1

Google is your friend here! You can search for the error message, or what you’re trying to do, and
include “in R” or “Rstats” in your search terms.2

You can also restrict your search to StackOverflow, or use the Rseek search engine, which only
searches on websites related to R.

Most of coding in R is (a) reading the R help and (b) searching for R help.

http://stackoverflow.com/
http://rseek.org/

HtLtC - An Introduction to R mauriziopaul
 kutchko
 TweetNTD

Teaching resources for How to Learn to Code
(UNC-Chapel Hill, Summer 2016)

Nomenclature
Variables in R are typically lowercase, and can include periods: e.g. example.variable. (Most
languages do not use periods in variable names, but R is an exception.) Functions can include
periods but are also sometimes in “camel case”: example.function() or
exampleFunction().

When copying + pasting a code example or output, using a fixed-width font, such as Courier New,
indicates that you are displaying code or plain-text output (like you see in these lesson plans).

Homework
Find the mean and median of solar radiation levels from the air quality data set.
Save the iris data set into a text-delimited format (hint: ?write.table). What does it
look like when opened with a text editor? What does it look like when opened with a
spreadsheet program like Excel?

Resources
R for cats
Software Carpentry: R for reproducible scientific analysis
Google R style guide

1. Source: http://www.burns-stat.com/documents/tutorials/impatient-r/more-r-errors-and-such/
↩

2. One of the minor downsides of R is its name being a single character, which makes searches
slightly more difficult. ↩

https://github.com/mauriziopaul
https://github.com/kutchko
https://twitter.com/TweetNTD
http://rforcats.net/
http://swcarpentry.github.io/r-novice-gapminder/
https://google.github.io/styleguide/Rguide.xml
http://www.burns-stat.com/documents/tutorials/impatient-r/more-r-errors-and-such/

